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LETTER TO THE EDITOR 

Breakdown of the soliton-gas phenomenology for the classical 
statistical mechanics of the sine-Gordon model 

S G Chung 
Department of Physics, Western Michigan University, Kalamazoo, MI 49008-51 51, USA 

Received 11 September 1990 

Abstract. It is shown that the soliton-gas phenomenology breaks down for the classical 
statistical mechanics of the sine-Gordon model. As a main cause of the breakdown, it is 
pointed out that the solitons and breathers in the gas phenomenology do not precisely 
represent the total degrees of freedom of the system. 

The gas phenomenological approach to the statistical mechanics of soliton-bearing 
systems, initiated by Krumhansl and Schrieffer [ l ]  and improved and extended by a 
number of authors [2-51 over the last decade, appears to be nearing its final goal: i.e. 
describe exactly the statistical-mechanical properties of completely integrable soliton- 
bearing systems in terms of zero-temperature soliton energies, soliton densities and 
two-body phaseshifts among solitons. Here the term solitons represents all the exact 
excitations in a given system. Although in classical mechanics terms the goal has not 
been justified by anything more than a naive intuition. Its quantum version has already 
been reached as the Bethe-Ansatz (BA) formulation and more completely as the 
factorized S-matrix formulation [6] of the quantum statistical mechanics of completely 
integrable systems such as the nonlinear Schrodinger model [7], the quantum Toda 
lattice [8,9] and the massive-Thirring-sine-Gordon model [ 101. 

Recently in the case of the Toda lattice, Theodorakopoulos [ 111 and Opper [ 121 
have shown that the proper classical limit h + 0 of the quantum BA thermodynamics 
gives a gas phenomenological formulation which rigorously reproduces the Toda 
classical free energy [13]. Based on intuition and encouraged by this new evidence, 
one may quite naturally expect that the gas phenomenological description is exact for 
any completely integrable systems. In this paper, however, I shall show that the gas 
phenomenological description breaks down for the classical statistical mechanics of 
the sine-Gordon ( SG) model, particularly at low temperatures. 

Currently, for the classical SG thermodynamics, there exist three different BA 

formulations due to (A) Chen et a1 [14], (B) Chung [15] and (C) Timonen et a1 [16], 
and two different soliton-gas phenomenologies due to (D) Sasaki [ 51 and (E) Takayama 
and Ishikawa [4] although (A) and (C) turn out to be equivalent and (D) and (E) 
turn out to be equivalent. The BA formulation (A) = (C) is written in terms of solitons 
and phonons and therefore may be referred to as the soliton-phonon theory. On the 
other hand, the BA formulation (B) and the gas phenomenology (D) = (E) are both 
written in terms of solitons and breathers and may be referred to as the soliton-breather 
theories. 

In this paper, we will focus on the soliton-breather theories. The elucidation of 
the possible exactness of the soliton-phonon theory is the last leftover question in the 
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long-standing breather-phonon problem [ 171 and requires careful considerations. My 
preliminary study shows that the soliton-phonon theory is no more than a good 
approximation in the weak coupling regime [ 181. This leads to a speculation that the 
nonlinear phonon is not an exact notion in the SG model, suggesting the re-examination 
of the classical inverse scattering analysis [19] as the only source of reporting the 
nonlinear phonon as an exact excitation. 

We now examine the soliton-breather theories in detail. First of all, like all the 
previous classical thermodynamic theories except those of Theodorakopoulos and 
Opper, the factor 27rh arising from quantization of particle momenta, still remains in 
the gas phenomenologies (D) = (E). Nevertheless, with a proper treatment of the factor 
27rh as given by Opper, one can demonstrate that these formulations give the gas 
phenomenological equation which correctly describes the classical Toda thermody- 
namics. When applied to the SG model, these formulations, particularly the Sasaki gas 
phenomenology (cf (29)-(31) in [ 5 ] ) ,  after a proper treatment of the factor 27rh, are 
found to provide the identical integral equations for the SG thermodynamics as in the 
BA formulation (B) (explicit forms are given in equations (7), (15) and (16) in [15] 
but are not necessary here). The point is that the basic equations obtained for the 
thermodynamics take the form of the gas phenomenology. That is, they are written 
solely in terms of the zero-temperature energies of solitons and breathers, their con- 
centrations and the classical two-body phase shifts among solitons and breathers. 

Based on the basic equations, Sasaki [5] and Chung [15] reproduced, analytically 
and numerically, the transfer matrix method result [20]. In particular, Sasaki has shown 
that the total number of breathers is half the total number of degrees of freedom of 
the system, which is consistent with the fact that a breather has an internal degree of 
freedom as well as a translational degree of freedom. It is noted, however, that the 
two soliton-breather theories both limit their arguments essentially to high tem- 
peratufes. In the gas phenomenology (D), temperature is restricted to m<< T, where 
m is the phonon mass - h. At first sight, this condition is always met because h + 0 
in the classical limit. However, as noted above, the factor 27rh should be chosen to 
show the theory to be a genuine classical theory, and I find that the proper classical 
limit h + 0 effectively puts m = t7r. The condition m << T then implies a high temperature. 
Similarly in the BA formulation (B), the restriction T1> 1 applied, where 1 is a lattice 
cut-off. Since I - ’  is of the order of the maximum momentum of unit-mass particles, 
which in the relativistic model is approximately the maximum energy of unit-mass 
particles, and since the unit-mass here is literally unity (the notation here is such that 
the classical soliton mass = g0/2 and the weak coupling limit is go’ + 0) and not the 
phonon mass of order h, the above condition also implies a high temperature. Therefore, 
the validity of the gas phenomenological description at low temperatures is yet to be 
clarified. 

Let us now show that the gas phenomenological description of the SG thermody- 
namics breaks down at low temperatures. This is clearly seen in the weak coupling 
limit, where solitons and antisolitons disappear and the basic equations for the thermally 
renormalized breather energy 69( 8, a) and the free energy per unit length F /  L give [ 151 

r w  
%(e, CY)= e cosh a+87r2T J de’min(8, e’) exp[-Z$(B’, .)/TI ( 1 )  

0 

d e  8 exp[-%( e, a)/ TI. (2) 
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The integral equation (1) can be solved easily to give 

X 

27r sinh( xB + A) %(e, a) = - 2 ~  in 

where 

x = (cosh a ) / 2 T  A = s inh- ' (x /2~) .  

(3) 

(4) 

Substituting (3) and (4) into (2) gives 

d a  cosh a ln (x / r ) - -  d a  cosh a A  ( 5 )  21T Jm -m 

where the first term is the free energy of free phonons. At high temperatures, the second 
term becomes unimportant relative to the first term, agreeing with the previous analysis. 
At low temperatures, however, A - l n ( x / l ~ )  and we have, to leading order in T, 

F /  L - - 2 r 2  T3 ( 6 )  
which is far from correct for the free energy of free phonons. Furthermore, even at 
high temperatures, large values of a such that cosh a >> T does not contribute to the 
free energy because A-ln(x/n.), lead to a finite free energy free from an ultraviolet 
divergence, which is simply wrong. 

We thus conclude that the gas phenomenological description of the SG thermody- 
namics is not exact but is approximately correct only at high temperatures and with 
an appropriate lattice cut-off. 

The gas phenomenology works perfectly for the classical Toda lattice. What is 
wrong with it for the classical SG thermodynamics? An essential difference between 
the two models is in the chemical potentials. In the Toda lattice, which has a similar 
physical structure as the nonlinear Schrodinger model, the chemical potential for the 
soliton is finite and the number of solitons is precisely controlled to be the same as 
the number of degrees of freedom of the system. On the other hand, in the SG model 
the chemical potentials for breathers and solitons are all zero with in the charge neutral 
sector which is our current subject, and the number of breathers and solitons is not 
obviously related to the degrees of freedom of the system. Nevertheless, the existing 
soliton-breather theories implicitly assume as a trivial fact that the total degrees of 
freedom of the system are precisely represented by the soliton-breather gas. Positive 
evidence for this assumption was provided by Sasaki as he consistently demonstrated 
that twice (translation and internal) the total number of breathers is equal to the total 
degrees of freedom of the system when the soliton contribution is negligible. In the 
rest of this paper, however, I shall demonstrate that the gas phenomenological descrip- 
tion is not self-consistent: that is, its result contradicts its starting assumption in the 
above. As for the Sasaki proof, it will be shown to be true only at high temperatures 
and with an appropriate lattice cut-off. 

We start with the momentum conservation of the ith breather in the quantum BA 

formulation 

d 4 ( a )  
= 27rh(pj + F j )  + c Aji*Pi 

d t  I 
(7) 

where pj and bj represent densities of breather and missing breather, * denotes a 
convolution with respect to rapidity a, and Aji is the a derivative of the quantum 
two-body phaseshift. Since we will finally take the weak coupling limit g;'+O, we 
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neglect solitons here. Proceeding as in the BA formulation (B)  and defining the classical 
breather density p(  8, a )  by 

the classical limit h+O of (7) gives (see equation (7C) of 11151 for Aoos)  
77/2 1 

go sin 8 cosh a = - exp( $( 8, a)/ T)p(  8, a )  + 5 de '  Aee.*p( 8') .  (9) 

Now in the weak coupling limit go+m, we rewrite goo as 8 and p (8 /go ,a ) /go  as 
p(8 ,  a ) ;  thus (9) reduces to 

2 77go 0 

dO'min(8, 8 ' )p (8 ' ) .  (10) 
277 sinh2(x8 + A )  

X 2  
8 cosh a = 

The total number of breathers in the weak coupling limit is given by 

N = loz dB d a  p (  8, a ) .  (11) 

The integral equation (10) can be solved as follows. First, differentiating twice with 
respect to 8 and defining e= x8 + A gives 

4sinh 8 p f 4 c o s h  Gp'+sinh $p"=O.  (12) 

Now put 

p =exp( z d8)(sinh2 e)-' 
Then (12) becomes a Riccati differential equation for z 

z'+ z 2  = 2/sinh2 e (14) 

having the solution 

tanh' e 1 
sinh $cosh 8 8 - tanh e+ C 

-+ - z = -  

where C is a constant of integration. Substituting (15) into (13) gives (D is another 
constant of integration) 

D e - t anh$+C 
sinh'e tanh 8 ' 

j-=- 

By checking the limiting values of p at 8 = 0 and CO from (lo),  the constants C and 
D are determined: 

X 
C = tanh A - A  D=-COsha. (17) 2 l f  

Substituting (16) and (17) into (11) and performing 6 integration gives the total number 
of breathers (cf (4) for A )  

1 "  
N =- 1 da cosh a(1 -tanh A ) .  (18) 4 v  
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To see the consistency of the above procedure for the breather density with the 
gas phenomenological description leading to the free energy (9, one may calculate 
the internal energy per unit length 

E / L = [ *  -X d a  [oxdBBcoshap(B,a) 

='i d a  cosh a ( 1  -tanh A )  
a 

2r -a 

and check that ( 5 )  and (19) do not violate the thermodynamic relationship 

a 
aT 

E = -T2- (F/ T ) .  

one can easily see that the relationship (20) is indeed satisfied. 
As is clear from (18), due to the second term in the bracket, twice the total number 

of breathers in the weak coupling limit, 2 N, does not agree with the total degrees of 
freedom of the system 

d a  cosh a. 

The undesirable term becomes relatively unimportant at high temperatures and with 
an appropriate cut-off cc + a,,, such that cosh amax << 4 r T  (note that sinh a,,, = r/ I ) .  
Without the cut-off, Sasaki's previous demonstration is correct only at T = 00. 

To summarize, I have shown that the gas phenomenological description of the 
classical sineGordon thermodynamics breaks down at low temperatures even with a 
lattice cut-off. As a main cause of the breakdown, I have pointed out that the solitons 
and breathers in the gas phenomenology do not precisely represent the total degrees 
of freedom of the system. Such a result, however, does not imply the inappropriateness 
of the soliton-breather approach itself. There is no doubt that solitons and breathers 
are the only necessary ingredients for constructing the classical sine-Gordon thermody- 
namics. The result only points to a failure of the simple and reasonably looking gas 
phenomenological picture in that the classical sine-Gordon thermodynamics can be 
described solely in terms of zero-temperature energies of solitons and breathers, their 
concentrations, and the classical two-body phase shifts among solitons and breathers. 
The exact theory of the classical statistical mechanics of the sine-Gordon model is still 
an open question. 
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